
Last updated 29th July 2022 - Version 5.1

Last updated 29th July 2022 - Version 5.1

DAX Functions Quick Reference Guide
This DAX functions quick reference guide has been prepared by Matt Allington from
http://exceleratorbi.com.au and contains a list of all the current DAX functions in a summarised and easy to
use format. You can print the document and/or use the search features for PDF documents to search for
the function you are looking for.

This document is a supplement and is not intended to replace the more detailed documentation that is
available online.

When looking for online documentation it is best to do a web search from your favourite search engine by
specifying the function name followed by the word DAX i.e. “FunctionName DAX”.

Tip: If you are going to search this document for a function name using search, then type the function name
followed by an open bracket. E.g. instead of searching for VALUES you should search VALUES(.

Table of Contents

DAX Aggregation Functions (Aggregators) ... 3

DAX Date and Time Functions ... 5

DAX Filter Functions .. 8

DAX Financial Functions .. 15

DAX Information Functions ... 28

DAX Logical Functions ... 30

DAX Math and Trig Functions .. 33

DAX Other Functions ... 38

DAX Other Special Functions (X-Functions / Iterators) .. 39

DAX Other Special Functions (Argument Functions) .. 42

DAX Parent and Child Functions .. 44

DAX Query Functions .. 45

DAX Statistical Functions ... 49

DAX Text Functions ... 52

DAX Time Intelligence Functions ... 55

DAX Time Intelligence Functions that return Scalar Values ... 55

DAX Time Intelligence Functions that return both a Table and a Scalar .. 56

DAX Time Intelligence Functions that return a Table of Dates .. 58

More Great Ways to Learn

Power BI (DAX) Advanced DAX Power Query Power BI Instructor Led Learn to Write DAX
Online Training Online Training Online Training Online Live Training in Power BI/Excel

https://xbi.com.au/swspbi https://xbi.com.au/swadax https://xbi.com.au/swpqa https://xbi.com.au/pbilon https://xbi.com.au/daxbundle

http://exceleratorbi.com.au/
https://xbi.com.au/swspbi
https://xbi.com.au/swpqa
https://xbi.com.au/pbilon
https://xbi.com.au/daxbundle
https://xbi.com.au/swspbi
https://xbi.com.au/swpqa
https://xbi.com.au/pbionl
https://xbi.com.au/daxbundle

Last updated 29th July 2022 - Version 5.1

DAX Aggregation Functions (Aggregators)

DAX Aggregation Functions (called aggregators for short) take a column or a table as the argument and
aggregate the values.

Function Notes

AVERAGE(column) Returns the average (arithmetic mean) of all the numbers in a
column in the current filter context.

This function is the equivalent of adding up the values in the
column and then dividing by the number of rows.

AVERAGEA(column) The AVERAGEA function takes a column and averages the
numbers in it, but also handles non-numeric data types according
to the following rules:

• Values that evaluates to TRUE count as 1.

• Values that evaluate to FALSE count as 0 (zero).

• Values that contain non-numeric text count as 0 (zero).

• Empty text ("") counts as 0 (zero).

COUNT(column) Counts numbers only in the current filter context.

COUNTA(column) Counts text values as well as numbers in the current filter context.

COUNTBLANK(column) Counts the number of blank cells in a column in the current filter
context.

COUNTROWS(table) The COUNTROWS function counts the number of rows in the
specified table, or in a table defined by an expression in the
current filter context.

DISTINCTCOUNT(column) Counts each value in a column once and only once in the current
filter context.

DISTINCTCOUNTNOBLANK(column) Counts the number of distinct values in a column.

Unlike DISTINCTCOUNT function, DISTINCTCOUNTNOBLANK

does not include the BLANK value.

MAX(column)

MAX(

 expression1,

 expression2

)

The MAX function takes a column or two expressions that return
numeric values as argument(s) and returns the largest numeric
value.

Ignores logical values and text in the current filter context.

Can also find the MAX of a text column.

MAXA(column) Like MAX, however also considers Dates and Logical values,
such as TRUE and FALSE. Rows that evaluate to TRUE count
as 1; rows that evaluate to FALSE count as 0 (zero)

MIN(column)

MIN(

 expression1,

 expression2

)

The MIN function takes a column or two expressions that return
numeric values as argument(s) and returns the smallest numeric
value.

Ignores logical values and text in the current filter context.

Last updated 29th July 2022 - Version 5.1

Function Notes

MINA(column) Like MIN, however also considers Dates and Logical Values.

Rows that evaluate to TRUE count as 1; rows that evaluate to
FALSE count as 0 (zero)

PRODUCT(column) Multiplies all the values in a column together. Why you would
want to? I have no idea.

SUM(column) Adds all the numbers in a column in the current filter context.

TOPN(
 n_value,
 tablename,
 orderByexpression1, [Order],
 [orderByexpression2, [Order]], …
)

Returns a table containing the top N rows. Order by expression is
typically a measure that you want to rank on.

Last updated 29th July 2022 - Version 5.1

DAX Date and Time Functions

You can use DAX Date and Time Functions in the calculations based on dates and time. DAX Date and
Time Functions are like the Excel date and time functions but use a datetime data type and can take values
from a column as an argument.

Function Notes

CALENDAR(

 start date,

 end date

)

Returns a table with a single column named “Date” that contains a
contiguous set of dates. The range of dates is from the specified
start date to the specified end date, inclusive of those two dates.

CALENDARAUTO(

 [end month of fiscal year]

)

Returns a table with a single column named “Date” that contains a
contiguous set of dates. The range of dates is calculated
automatically based on data in the model.

DATE(

 year,

 month,

 day

)

Returns the specified date in datetime format.

• Dates beginning with March 1, 1900 are supported.

• If the year value is between 0 and 1899, the value is added to
1900 to produce the final value. The value of the year argument
can include one to four digits.

• You should use four digits for the year argument whenever
possible to prevent unwanted results.

DATEDIFF(

 start date,

 end date,

 interval

)

Returns the count of interval boundaries crossed between two
dates.

The interval to use when comparing dates can be one of the
following:

• SECOND

• MINUTE

• HOUR

• DAY

• WEEK

• MONTH

• QUARTER

• YEAR

If start_date is larger than end_date an error is returned.

DATEVALUE(date text) Converts a date in the form of text to a date in datetime format.

DAY(date) Returns the day of the month, a number from 1 to 31.

EDATE(

 start date,

 months

)

Returns the date that is the indicated number of months before or
after the start date.

You can use EDATE to calculate maturity dates or due dates that
fall on the same day of the month as the date of issue. You can
also use EDATE to find the same date prior month or prior year.

https://msdn.microsoft.com/en-us/library/ee634786.aspx

Last updated 29th July 2022 - Version 5.1

Function Notes

EOMONTH(

 start date,

 months

)

Returns the date in datetime format of the last day of the month,
before or after a specified number of months.

You can use EOMONTH to calculate maturity dates or due dates
that fall on the last day of the month.

HOUR(datetime value) Returns the hour as a number from 0 (12:00 A.M.) to 23 (11:00
P.M.).

MINUTE(datetime value) Returns the minute as a number from 0 to 59, given a date and time
value.

MONTH(datetime value) Returns the month as a number from 1 (January) to 12 (December).

NETWORKDAYS(

 start date,

 end date

 [, <weekend>, <holidays>]

)

Returns the number of whole workdays between two dates
(inclusive).

weekend indicates the weekend days and they are not included in
the calculation of the number of days.

 weekend can be omitted or can be a number between 1 and 17.

 if omitted or if it is 1 then the weekend is Saturday & Sunday.

 the numbers from 2 to 17 represent different combinations of
days in the week that are the weekend.

holidays is a table with a column of one or more dates that are to
be excluded from the working day calendar.

NOW() Returns the current date and time in datetime format.

The NOW function is useful when you need to display the current
date and time on a report or calculate a value based on the current
date and time, and have that value updated each time you open
the workbook.

QUARTER(datetime value) New in Power BI Desktop.

Returns the quarter as a number from 1 to 4.

1 (Jan – Mar) … 4 (Oct – Dec)

If the input value is BLANK, the output value is also BLANK.

SECOND(datetime value) Returns the seconds of a time value, as a number from 0 to 59.

TIME(

 hour,

 minute,

 second

)

Converts hours, minutes, and seconds given as numbers to a time
in datetime format.

TIMEVALUE(time text) Converts a time in text format to a time in datetime format.

Last updated 29th July 2022 - Version 5.1

Function Notes

TODAY() Returns the current date in datetime format.

The TODAY function is useful when you need to have the current
date displayed on a report. It is also useful for calculating intervals.

UTCNOW() Returns the current UTC date and time.

UTCTODAY() Returns the current UTC date.

WEEKDAY(

 date,

 return type

)

Returns a number from 1 to 7 identifying the day of the week of a
date.

• If return type is 1, and the week begins on Sunday (1) and ends
on Saturday (7).

• If return type is 2, the week begins on Monday (1) and ends on
Sunday (7).

• If return type is 3, the week begins on Monday (0) and ends on
Sunday (6).

WEEKNUM(

 date,

 return type

)

Returns the week number for the given date in a year according to
the return_type value. The week number indicates where the week
falls numerically within a year.

If return type is 1, week begins on Sunday. Weekdays are
numbered 1 through 7.

If return type is 2, week begins on Monday. Weekdays are
numbered 1 through 7.

YEAR(datetime value) Returns the year of a date as a four-digit integer in the range 1900-
9999.

YEARFRAC(

 start_date,

 end_date,

 [basis]

)

Calculates the fraction of the year represented by the number of
whole days between two dates.

Use the YEARFRAC function to identify the proportion of a whole
year's benefits or obligations to assign to a specific term.

Basis (optional) is the type of day count basis to use:

0 - US (NASD) 30/360

1 - Actual/actual

2 - Actual/360

3 - Actual/365

4 - European 30/360

Last updated 29th July 2022 - Version 5.1

DAX Filter Functions

DAX Filter Functions are very different to Excel functions. They are used to (typically) return filtered tables
that can be used in your data model. These new “virtual” tables retain lineage with the physical data model
and hence they can “filter” the physical data model on the fly. Lookup functions work by using tables and
relationships between them. Filtering functions let you manipulate data context to create dynamic
calculations.

DAX FILTER and VALUES functions are the most complex and powerful functions.

Function Notes

1.

ADDMISSINGITEMS(

 showAllColumn[, showAllColumn] …,

 table,

 groupingColumn[, groupingColumn] …

 [, filterTable] …

)

2.

ADDMISSINGITEMS(

 showAllColumn[, showAllColumn] …,

 table,

 [ROLLUPISSUBTOTAL(]

 groupingColumn[, isSubtotal_columnName]

 [, groupingColumn][, isSubtotal_columnName]

 …

 [)],

 [, filterTable] …

)

Adds combinations of items from multiple columns
to a table if they do not already exist. The
determination of which item combinations to add
is based on referencing source columns which
contain all the possible values for the columns.

To determine the combinations of items from
different columns to evaluate: AutoExist is
applied for columns within the same table while
CrossJoin is applied across different tables.

The ADDMISSINGITEMS function will return
BLANK values for the IsSubtotal columns of
blank rows it adds.

See also: The argument functions –
ROLLUPISSUBTOTAL and ROLLUPGROUP.

https://msdn.microsoft.com/en-us/library/ee634807.aspx

Last updated 29th July 2022 - Version 5.1

Function Notes

ALL(

 [TableOrColumn]

 [, TableOrColumn] …

)

Updated in Power BI Desktop to include ALL().

Returns all the rows in a table, or all the values in
a column, ignoring any filters that might have been
applied in the current context.

If Table is used as the argument, this function is
useful for clearing filters and creating calculations
on all the rows in a table.

If specific Columns are used as the arguments,
this function removes all filters from the specified
columns in the table and all other filters on other
columns in the table still apply.

This is useful when you want to remove the
context filters for one or more specific columns
and to keep all other context filters.

ALL() removes all the filters everywhere. ALL() can

only be used to clear filters but not to return a table.

ALLCROSSFILTERED(table) Clear all filters which are applied to a table.

ALLCROSSFILTERED can only be used to clear

filters but not to return a table.

ALLEXCEPT(

 table,

 column

 [, column] …

)

Removes all context filters in the table except
filters that are applied to the specified columns.

This is convenient to use when you want to
remove the filters on many, but not all, columns in
a table.

ALLNOBLANKROW(table | column) When the passed parameter was a table, returns
all rows but the blank row from the parent table of
a relationship and disregards any context filters
that might exist.

When the passed parameter was a column,
returns all distinct values of the column but the
blank row, and disregards any context filters that
might exist.

Last updated 29th July 2022 - Version 5.1

Function Notes

ALLSELECTED([tableName | columnName]) The ALLSELECTED function gets the context
that represents all rows and columns in the query,
while keeping explicit filters and contexts other
than row and column filters. This function can be
used to obtain visual totals in queries.

Keeps filters on Rows and Columns in a pivot
table while keeping the filters on slicers and other
explicit filters.

This function is different from ALL because it
retains all filters explicitly set within the query, and
it retains all context filters other than row and
column filters.

CALCULATE(

 expression

 [, filter1]

 [, filter2] …

)

Returns a scalar value.

Modifies the initial filter context prior to calculating
the expression. It can do this in 2 ways, by
applying the new filters specified in the
CALCULATE function and/or by converting an
existing row context into an equivalent filter
context aka context transition.

expression is same as a measure.

Filters can be:

• Boolean filter expressions

• Table filter expressions

• Filter modification functions

Boolean filter expressions can contain an
aggregation function that returns a scalar value.

When there are multiple filters, they can be
evaluated by using AND (&&) meaning all
conditions must be TRUE, or by OR (||), meaning
either condition can be true.

Last updated 29th July 2022 - Version 5.1

Function Notes

CALCULATETABLE(

 expression,

 filter1,

 filter2, …

)

Returns a table of values.

Modifies the filter context prior to returning a table
of values. It can do this in 2 ways, by applying the
new filters specified in the CALCULATETABLE
function and/or by converting an existing row
context into an equivalent filter context aka
context transition.

expression must be a table in the data model or a
function that returns a table.

Filters can be:

• Boolean filter expressions

• Table filter expressions

• Filter modification functions

Boolean filter expressions can contain an
aggregation function that returns a scalar value.

When there are multiple filters, they can be
evaluated by using AND (&&) meaning all
conditions must be TRUE.

CROSSFILTER(

 columnName1,

 columnName2,

 direction

)

Sets the cross-filtering direction for the indicated
relationship, for the duration of the query. It does
not return any value.

You can use CROSSFILTER inside CALCULATE.

The cross-filter direction to be used is determined
by the argument – direction.

None - No cross-filtering occurs along this
relationship

Both - Filters on either side filter the other

OneWay - Filters on the one or lookup side of the
side of the relationship filter the many side.

OneWay_LeftFiltersRight - Filters on the side of
columnName1 filter the side of columnName2.

OneWay_RightFiltersLeft - Filters on the side of
columnName2 filter the side of columnName1.

DISTINCT(column) Returns a 1 column table of all the distinct values
in the current filter context. If there are BLANKS
then they will be ignored. If you want to return a
BLANK as well, then use VALUES function
instead.

DISTINCT(table) Returns a table by removing duplicate rows from
another table or expression.

The returned table will contain unique (or distinct)
rows.

Last updated 29th July 2022 - Version 5.1

Function Notes

EARLIER(

 column

 [, number]

)

Used to access a previous row context when more
than 1 row context exists in the function.

EARLIER is useful for nested calculations where
you want to use a certain value as an input and
produce calculations based on that input.

EARLIEST(column) As above, but returns the absolute first row
context.

FILTER(

 table,

 filter

)

Returns a table containing only the filtered rows.

You can use FILTER to use only specific data in
calculations.

FILTER is not used independently, but as a
function that is embedded in other functions such
as CALCULATE.

FILTERS(columnName) Returns a table containing the list of values that
are directly applied as filters.

HASONEFILTER(columnName) Returns TRUE when the number of directly
filtered values on columnName is one; otherwise
returns FALSE.

Used to check if there is one and only one filter on
a column in the current filter context.

HASONEVALUE(columnName) Returns TRUE when the context for columnName
has been filtered down to one distinct value only.
Otherwise is FALSE.

Used to check if there is one and only one value
visible in a column in the current filter context.

ISCROSSFILTERED(columnName) Returns TRUE when columnName or another
column in the same or related table is being
filtered. Otherwise returns FALSE.

Used to check if there is an indirect filter on a
column in the current filter context.

ISFILTERED(columnName) Returns TRUE when columnName is being
filtered directly. If there is no filter on the column
or if the filtering happens because a different
column in the same table or in a related table is
being filtered, then the function returns FALSE.

Used to check if there the column is filtered at all
in the current filter context.

Last updated 29th July 2022 - Version 5.1

Function Notes

KEEPFILTERS(expression) You use KEEPFILTERS within the context
CALCULATE and CALCULATETABLE
functions, to override the standard behaviour of
those functions.

CALCULATE filters replace the current context,
while KEEPFILTERS adds filters to the current
context.

RELATED(column) Returns a related value from another table. A
single value that is related to the current row.

Forces a row context to follow the relationship to
a related table and return that value. Can only be
used on the many side of the relationship.

RELATEDTABLE(tableName) Returns a table of values from the many side of
the relationship.

Forces a row context to follow the relationship to
a related table and return that value. Can only be
used on the one side of the relationship.

REMOVEFILTERS(

 [table | column[, column[, column[,…]]]])

Clears filters from the specified table or columns.

REMOVEFILTERS can only be used to clear
filters but not to return a table.

So it can only be used within CALCULATE.

SELECTEDVALUE(

 columnName

 [, alternateResult]

)

It can be used as a substitute for
IF(HASONEVALUE()) and will return a scalar
value if there is one and only 1 value selected in
the current filter context.

Otherwise returns alternateResult.

If alternateResult is omitted, the default value is
BLANK().

Last updated 29th July 2022 - Version 5.1

Function Notes

SUBSTITUTEWITHINDEX(

 table,

 indexColumnName,

 indexColumnsTable,

 orderBy_expression[, order]

 [, orderBy_expression[, order]] …

)

Returns a table which represents a left semijoin of
the two tables supplied as arguments. The
semijoin is performed by using common columns,
determined by common column names and
common data type. The columns being joined on
are replaced with a single column in the returned
table which is of type integer and contains an
index. The index is a reference into the right join
table given a specified sort order.

Columns in the right/second table supplied which
do not exist in the left/first table supplied are not
included in the returned table and are not used to
join on.

The index starts at 0 (0-based) and is incremented
by one for each additional row in the right/second
join table supplied. The index is based on the sort
order specified for the right/second join table.

TREATAS(

 table_expression,

 column1

 [, column2]

 [, column3] …

)

Returns a table that contains all the rows in
column(s) that are also in table_expression.

The number of columns specified must be equal
to the number of columns in the table expression,
and be in the same order.

Use when a relationship does not exist between
the tables.

USERELATIONSHIP(

 columnName1,

 columnName2

)

You can have more than 1 relationship between 2
tables in DAX, but only 1 can be active at a time.
Use this function inside CALCULATE to use the
inactive relationship instead of the active one.

VALUES(TableNameOrColumnName) Returns a table consisting of a single column of
unique values in the current filter context.
If there are blanks in the list a blank will be
returned.

If you want to exclude the blank then use
DISTINCT instead.

Last updated 29th July 2022 - Version 5.1

DAX Financial Functions

DAX Financial Functions are used in formulas that perform financial calculations. These functions are similar
to Excel financial functions.

Function Notes

ACCRINT(

 issue,

 first_interest,

 settlement,

 rate,

 par,

 frequency

 [, basis[, calc_method]]

)

Returns the accrued interest for a security that pays periodic interest.

Formula used:

where:

Ai= number of accrued days for the ith quasi-coupon period within odd period.

NC = number of quasi-coupon periods that fit in odd period. If this number contains a fraction,
raise it to the next whole number.

NLi = normal length in days of the quasi-coupon period within odd period.

ACCRINTM(

 issue,

 maturity,

 rate,

 par

 [, basis]

)

Returns the accrued interest for a security that pays interest at
maturity.

Formula used:

where:

A = Number of accrued days counted according to a monthly basis. For interest at maturity
items, the number of days from the issue date to the maturity date is used.

D = Annual Year Basis.

AMORDEGRC(

 cost,

 date_purchased,

 first_period,

 salvage,

 period,

 rate

 [, basis]

)

Returns the depreciation for each accounting period.

This function is provided for the French accounting system.

If an asset is purchased in the middle of the accounting period, the
prorated depreciation is taken into account.

The function is similar to AMORLINC, except that a depreciation
coefficient is applied in the calculation depending on the life of the
assets.

https://docs.microsoft.com/en-us/dax/financial-functions-dax

Last updated 29th July 2022 - Version 5.1

Function Notes

AMORLINC(

 cost,

 date_purchased,

 first_period,

 salvage,

 period,

 rate

 [, basis]

)

Returns the depreciation for each accounting period.

This function is provided for the French accounting system.

If an asset is purchased in the middle of the accounting period, the
prorated depreciation is taken into account.

COUPDAYBS(

 settlement,

 maturity,

 frequency

 [, basis]

)

Returns the number of days from the beginning of a coupon period
until its settlement date.

COUPDAYS(

 settlement,

 maturity,

 frequency

 [, basis]

)

Returns the number of days in the coupon period that contains the
settlement date.

COUPDAYSNC(

 settlement,

 maturity,

 frequency

 [, basis]

)

Returns the number of days from the settlement date to the next
coupon date.

COUPNCD(

 settlement,

 maturity,

 frequency

 [, basis]

)

Returns the next coupon date after the settlement date.

Last updated 29th July 2022 - Version 5.1

Function Notes

COUPNUM(

 settlement,

 maturity,

 frequency

 [, basis]

)

Returns the number of coupons payable between the settlement
date and maturity date, rounded up to the nearest whole coupon.

COUPPCD(

 settlement,

 maturity,

 frequency

 [, basis]

)

Returns the previous coupon date before the settlement date.

CUMIPMT(

 rate,

 nper,

 pv,

 start_period,

 end_period,

 type

)

Returns the cumulative interest paid on a loan between start_period
and end_period.

The units used for specifying rate and nper should be consistent.

CUMPRINC(

 rate,

 nper,

 pv,

 start_period,

 end_period,

 type

)

Returns the cumulative principal paid on a loan between start_period
and end_period.

The units used for specifying rate and nper should be consistent.

Last updated 29th July 2022 - Version 5.1

Function Notes

DB(

 cost,

 salvage,

 life,

 period

 [, month]

)

Returns the depreciation of an asset for a specified period using the
fixed-declining balance method.

Formulas used:

DB for a period

where

•
• rate is rounded to 3 decimal places.

DB for the first period

DB for the last period

DDB(

 cost,

 salvage,

 life,

 period

 [, factor]

)

Returns the depreciation of an asset for a specified period using the
double-declining balance method or some other method you specify.

The parameter factor specifies the rate at which the balance
declines. If factor is omitted, it is assumed to be 2 (the double-
declining balance method).

Formula used:

If you want to switch to the straight-line depreciation method when
depreciation is greater than the declining balance calculation use the
VDB function.

DISC(

 settlement,

 maturity,

 pr,

 redemption

 [, basis]

)

Returns the discount rate for a security.

Formula used:

where:

• B = number of days in a year, depending on the year basis.

• DSM = number of days between settlement and maturity.

DOLLARDE(

 fractional_dollar,

 fraction

)

Converts a dollar price expressed as an integer part and a fraction
part, separated by a decimal symbol (e.g. 1.02), into a dollar price
expressed as a decimal number.

The parameter fraction is the integer to divide the fraction part of
the fractional_dollar. The choice of integer depends on the dollar
precision you want.

Last updated 29th July 2022 - Version 5.1

Function Notes

DOLLARFR(

 decimal_dollar,

 fraction

)

Converts a dollar price expressed as a decimal number into a dollar
price expressed as an integer part and a fraction part, , separated
by a decimal symbol (e.g. 1.02.)

DURATION(

 settlement,

 maturity,

 coupon,

 yld,

 frequency

 [, basis]

)

Returns the Macauley duration for an assumed par value of $100.

Duration is defined as the weighted average of the present value of
cash flows and is used as a measure of a bond price's response to
changes in yield.

EFFECT(

 nominal_rate,

 npery

)

Returns the effective annual interest rate, given the nominal annual
interest rate and the number of compounding periods per year.

The parameter npery is used to specify the number of compounding
periods per year

Formula used:

FV(

 rate,

 nper,

 pmt

 [, pv[, type]]

)

Calculates the future value of an investment based on a constant
interest rate. You can use FV with either periodic, constant
payments, and/or a single lump sum payment.

Units used for specifying rate and nper should be consistent.

INTRATE(

 settlement,

 maturity,

 investment,

 redemption

 [, basis]

)

Returns the interest rate for a fully invested security.

Formula used:

where

• B = number of days in a year, depending on the year basis.

• DIM = number of days from settlement to maturity.

Last updated 29th July 2022 - Version 5.1

Function Notes

IPMT(

 rate,

 per,

 nper,

 pv

 [, fv[, type]]

)

Returns the interest payment for a given period for an investment
based on periodic, constant payments and a constant interest rate.

Units used for specifying rate and nper should be consistent.

ISPMT(

 rate,

 per,

 nper,

 pv

)

Calculates the interest paid (or received) for the specified period of
a loan (or investment) with even principal payments.

MDURATION(

 settlement,

 maturity,

 coupon,

 yld,

 frequency

 [, basis]

)

Returns the modified Macauley duration for a security with an
assumed par value of $100.

Formula used:

NOMINAL(

 effect_rate,

 npery

)

Returns the nominal annual interest rate, given the effective rate and
the number of compounding periods per year.

The relationship between NOMINAL and EFFECT is shown in the
following equation:

NPER(

 rate,

 pmt,

 pv

 [, fv[, type]]

)

Returns the number of periods for an investment based on periodic,
constant payments and a constant interest rate.

Last updated 29th July 2022 - Version 5.1

Function Notes

ODDFPRICE(

 settlement,

 maturity,

 issue,

 first_coupon,

 rate,

 yld,

 redemption,

 frequency

 [, basis]

)

Returns the price per $100 face value of a security having an odd
(short or long) first period.

Formulas used:

Odd short first coupon:

where:

• A = number of days from the beginning of the coupon period to the settlement date
(accrued days).

• DSC = number of days from the settlement to the next coupon date.

• DFC = number of days from the beginning of the odd first coupon to the first coupon
date.

• E = number of days in the coupon period.

• N = number of coupons payable between the settlement date and the redemption
date. (If this number contains a fraction, it is raised to the next whole number.)

Odd long first coupon:

where:

• Ai = number of days from the beginning of the ith, or last, quasi-coupon period within
odd period.

• DCi = number of days from dated date (or issue date) to first quasi-coupon (i = 1) or
number of days in quasi-coupon (i = 2, ..., i = NC).

• DSC = number of days from settlement to next coupon date.

• E = number of days in coupon period.

• N = number of coupons payable between the first real coupon date and redemption
date. (If this number contains a fraction, it is raised to the next whole number.)

• NC = number of quasi-coupon periods that fit in odd period. (If this number contains
a fraction, it is raised to the next whole number.)

• NLi = normal length in days of the full ith, or last, quasi-coupon period within odd
period.

• Nq = number of whole quasi-coupon periods between settlement date and first
coupon.

Last updated 29th July 2022 - Version 5.1

Function Notes

ODDFYIELD(

 settlement,

 maturity,

 issue,

 first_coupon,

 rate,

 pr,

 redemption,

 frequency

 [, basis]

)

Returns the yield of a security that has an odd (short or long) first
period.

ODDFYIELD is calculated using an iterative method.

It uses the Newton method based on the formula used for the
function ODDFPRICE.

The yield is changed through 100 iterations until the estimated price
with the given yield is close to the price.

ODDLPRICE(

 settlement,

 maturity,

 last_interest,

 rate,

 yld,

 redemption,

 frequency

 [, basis]

)

Returns the price per $100 face value of a security having an odd
(short or long) last coupon period.

ODDLYIELD(

 settlement,

 maturity,

 last_interest,

 rate,

 pr,

 redemption,

 frequency

 [, basis]

)

Returns the yield of a security that has an odd (short or long) last
period.

Formula used:

where:

• Ai = number of accrued days for the ith, or last, quasi-coupon period within odd period
counting forward from last interest date before redemption.

• DCi = number of days counted in the ith, or last, quasi-coupon period as delimited by the
length of the actual coupon period.

• NC = number of quasi-coupon periods that fit in odd period; if this number contains a
fraction it will be raised to the next whole number.

• NLi = normal length in days of the ith, or last, quasi-coupon period within odd coupon
period.

Last updated 29th July 2022 - Version 5.1

Function Notes

PDURATION(

 rate,

 pv,

 fv

)

Returns the number of periods required by an investment to reach a
specified value.

Formula used:

PMT(

 rate,

 nper,

 pv

 [, fv[, type]]

)

Calculates the payment for a loan based on constant payments and
a constant interest rate.

PPMT(

 rate,

 per,

 nper,

 pv

 [, fv[, type]]

)

Returns the payment on the principal for a given period for an
investment based on periodic, constant payments and a constant
interest rate.

PRICE(

 settlement,

 maturity,

 rate,

 yld,

 redemption,

 frequency

 [, basis]

)

Returns the price per $100 face value of a security that pays periodic
interest.

Formulas used:

• N is the number of coupons payable between the settlement date and redemption date

• When N > 1

• When N = 1

where

• E = number of days in coupon period in which the settlement date falls.

• A = number of days from beginning of coupon period to settlement date.

Last updated 29th July 2022 - Version 5.1

Function Notes

PRICEDISC(

 settlement,

 maturity,

 discount,

 redemption

 [, basis]

)

Returns the price per $100 face value of a discounted security.

Formula used:

where

• B = number of days in year, depending on year basis.

• DSM = number of days from settlement to maturity.

PRICEMAT(

 settlement,

 maturity,

 issue,

 rate,

 yld

 [, basis]

)

Returns the price per $100 face value of a security that pays interest
at maturity.

Formula used:

where:

• B = number of days in year, depending on year basis.

• DSM = number of days from settlement to maturity.

• DIM = number of days from issue to maturity.

• A = number of days from issue to settlement.

PV(

 rate,

 nper,

 pmt

 [, fv[, type]]

)

Calculates the present value of a loan or an investment, based on a
constant interest rate.

Formulas used:

If rate is not 0, then:

If rate is 0, then:

RATE(

 nper,

 pmt,

 pv

 [, fv[, type[, guess]]]

)

Returns the interest rate per period of an annuity.

RATE is calculated by iteration and can have zero or more solutions.

If the successive results of RATE do not converge to within
0.0000001 after 20 iterations, an error is returned.

RECEIVED(

 settlement,

 maturity,

 investment,

 discount

 [, basis]

)

Returns the amount received at maturity for a fully invested security.

Formula used:

where

• B = number of days in a year, depending on the year basis.

• DIM = number of days from issue to maturity.

Last updated 29th July 2022 - Version 5.1

Function Notes

RRI(

 nper,

 pv,

 fv

)

Returns an equivalent interest rate for the growth of an investment.

Formula used:

SLN(

 cost,

 salvage,

 life

)

Returns the straight-line depreciation of an asset for one period.

SYD(

 cost,

 salvage,

 life,

 per

)

Returns the sum-of-years' digits depreciation of an asset for a
specified period.

TBILLEQ(

 settlement,

 maturity,

 discount

)

Returns the bond-equivalent yield for a Treasury bill.

Formula used:

where:

• DSM is the number of days between settlement and maturity computed according to the
360 days per year basis.

TBILLPRICE(

 settlement,

 maturity,

 discount

)

Returns the price per $100 face value for a Treasury bill.

Formula used:

where:

• DSM = number of days from settlement to maturity, excluding any maturity date that is
more than one calendar year after the settlement date.

TBILLYIELD(

 settlement,

 maturity,

 pr

)

Returns the yield for a Treasury bill.

Formula used:

where:

• DSM = number of days from settlement to maturity, excluding any maturity date that is
more than one calendar year after the settlement date.

Last updated 29th July 2022 - Version 5.1

Function Notes

VDB(

 cost,

 salvage,

 life,

 start_period,

 end_period

 [, factor[, no_switch]]

)

Returns the depreciation of an asset for any period you specify,
including partial periods, using the double-declining balance method
or some other method you specify.

VDB stands for variable declining balance.

The parameter factor is the rate at which the balance declines.

If factor is omitted, it is assumed to be 2 (the double-declining
balance method).

XIRR(

 table,

 values,

 dates

 [, guess]

 [, alternateResult]

)

Returns the internal rate of return for a schedule of cash flows that
is not necessarily periodic.

alternateResult is a value returned in place of an error when a
solution cannot be determined.

Formula used:

XNPV(

 table,

 values,

 dates,

 rate

)

Returns the present value for a schedule of cash flows that is not
necessarily periodic.

Formula used:

Last updated 29th July 2022 - Version 5.1

Function Notes

YIELD(

settlement,

 maturity,

 rate,

 pr,

 redemption,

 frequency

 [, basis]

)

Returns the yield on a security that pays periodic interest. Use
YIELD to calculate bond yield.

Formula used:

• If there is one coupon period or less until redemption

where:

o A = number of days from the beginning of the coupon period to the settlement date
(accrued days).

o DSR = number of days from the settlement date to the redemption date.
o E = number of days in the coupon period.

• If there is more than one coupon period until redemption

o YIELD is calculated through a hundred iterations.
o The resolution uses the Newton method, based on the formula used for the

function PRICE.
o The yield is changed until the estimated price given the yield is close to price.

YIELDDISC(

 settlement,

 maturity,

 pr,

 redemption

 [, basis]

)

Returns the annual yield for a discounted security.

YIELDMAT(

 settlement,

 maturity,

 issue,

 rate,

 pr

 [, basis]

)

Returns the annual yield of a security that pays interest at maturity.

Last updated 29th July 2022 - Version 5.1

DAX Information Functions

DAX Information Functions provide required information based on the given argument.

Function Notes

CONTAINS(

 table,

 columnName, value

 [, columnName, value] …

)

Returns TRUE if each specified value is contained in the
corresponding columnName.Otherwise, the function returns
FALSE.

CONTAINSROW(

 table,

 scalar expression1

 [, scalar expression2, …]

)

Returns TRUE if a row of values exists or contained in a table.

Otherwise returns FALSE.

Note: The IN operator and the CONTAINSROW function are
functionally the same. Only the syntax is different.

CUSTOMDATA() Returns the content of the CustomData property in the
connection string.

Returns Blank, if CustomData property was not defined at
connection time.

scalar expression IN table

OR

(scalar expression1, scalar expression2,
…) IN table

IN Operator:

Returns TRUE if a row of values exists or contained in a table.

Otherwise returns FALSE.

Note: The IN operator and the CONTAINSROW function are
functionally the same. Only the syntax is different.

ISBLANK(value) Returns TRUE if the value is blank.

Otherwise, returns FALSE.

ISEMPTY(table_expression)

Returns TRUE if the table is empty (has no rows),

Returns FALSE otherwise.

ISERROR(value) Returns TRUE if the value is an Error.

Otherwise, returns FALSE.

ISEVEN(number) Returns TRUE if number is even,

Returns FALSE if number is odd.

If number is nonnumeric, ISEVEN returns the #VALUE! error
value.

ISINSCOPE(column)

Returns TRUE when the specified column is the level in a
hierarchy of levels.

ISLOGICAL(value) Returns TRUE if the value is a logical value (TRUE OR
FALSE).

Otherwise, returns FALSE.

https://msdn.microsoft.com/en-us/library/ee634552.aspx

Last updated 29th July 2022 - Version 5.1

Function Notes

ISNONTEXT(value) Returns TRUE if the value is not text or blank. (Blank cells are
not text).

Returns FALSE if the value is text.

An empty string is considered as text.

ISNUMBER(value) Returns TRUE if the value is numeric.

Otherwise, returns FALSE.

ISODD(number) Returns TRUE if number is odd.

Returns FALSE if number is even.

If number is nonnumeric, ISODD returns the #VALUE! error
value.

ISONORAFTER(

 scalar expression,

 scalar expression

 [, sort order]

 [, scalar expression,

 scalar expression

 [, sort order]

], …

)

This function takes a variable number of triples, the first two
parameters in a triple are the expressions to be compared and
the third is the sort order - ascending (default) or descending.

Based on the sort order, the first parameter is compared with
the second parameter.

If the sort order is ascending, the comparison to be done is
first parameter greater than or equal to second parameter.

If the sort order is descending, the comparison to be done is
first parameter less than or equal to second parameter

ISTEXT(value) Returns TRUE if the value is text

Otherwise, returns FALSE.

Empty string is text.

Blank is not text.

LOOKUPVALUE(

 result_columnName,

 search_columnName,

 search_value

 [, search_columnName,

 search_value

], …

 [, <alternateResult>]

)

Updated in Power BI Desktop to include alternateResult.

Returns the value of result_column at the row where all pairs
of search_column and search_value have a match.

If only some of the criteria match, a BLANK or alternateResult
(if given) is returned.

If multiple rows match the search values and in all cases
result_column values are identical, then that value is returned.
Otherwise, an error or alternateResult (if given) is returned.

USERNAME() Returns the username from the credentials given to the system
at connection time. If this is a Power BI Desktop or Excel file
it will be in the format Domain\Username. If it is in the Power
BI Service, it will be in the format Username@domain.com

Last updated 29th July 2022 - Version 5.1

DAX Logical Functions

DAX Logical Functions return values based on the conditional results.

Function Notes

AND(

 logical_value,

 logical_value

)

Checks whether both arguments are TRUE, and returns TRUE
if both arguments are TRUE. Otherwise returns FALSE.

If you have more than two arguments, use && (double
ampersand) as an alternative and you can have as many “&&”
as you like.

BITAND(

 number,

 number

)

Returns a bitwise AND of two numbers.

number is any scalar expression that returns number.

If not an integer, it is truncated.

Supports both positive and negative numbers.

BITLSHIFT(

 number,

 shift_amount

)

Returns a number (integer) shifted left by the specified number
of bits.

Both number, shift_amount can be any DAX expression that
returns an integer expression.

If shift_amount is negative, it will shift in the opposite direction.

If absolute value of shift_amount is larger than 64, there will be
no error but will result in overflow/underflow.

BITOR(

 number,

 number

)

Returns a bitwise OR of two numbers.

number is any scalar expression that returns number.

If not an integer, it is truncated.

Supports both positive and negative numbers.

BITRSHIFT(

 number,

 shift_amount

)

Returns a number (integer) shifted right by the specified
number of bits.

Both number, shift_amount can be any DAX expression that
returns an integer expression.

If shift_amount is negative, it will shift in the opposite direction.

If absolute value of shift_amount is larger than 64, there will be
no error but will result in overflow/underflow.

BITXOR(

 number,

 number

)

Returns a bitwise XOR of two numbers.

number is any scalar expression that returns number.

If not an integer, it is truncated.

Supports both positive and negative numbers.

https://msdn.microsoft.com/en-us/library/ee634365(v=sql.110).aspx

Last updated 29th July 2022 - Version 5.1

Function Notes

COALESCE(

 expression,

 expression

 [, expression] …

)

Returns the scalar value coming from the first expression that

does not evaluate to BLANK. If all expressions evaluate to

BLANK, BLANK is returned.

Input expressions may be of different data types that return a

scalar expression.

COALESCE can be used to convert BLANK values of totals

to 0.

COALESCE simplifies the code that otherwise requires an IF
condition.

i.e. instead of writing IF(ISBLANK(Result), 0, Result), we can
write COALESCE(Result, 0)

FALSE() Returns the logical value FALSE.

IF(

 logical test,

 value_if_true

 [, value_if_false]

)

Checks if the condition provided as the first argument is met.
Returns one value if the condition is TRUE and returns another
value if the condition is FALSE.

Returns blank, if the condition is FALSE and value_if_false is
omitted.

IF.EAGER(

 logical test,

 value_if_true

 [, value_if_false]

)

Evaluates both the expressions value_if_true and
value_if_false.

Then checks if the condition provided as the first argument
(logical_test) is met. Returns value_if_true if the condition is
TRUE and returns value_if_false if the condition is FALSE.

The difference between IF and IF.Eager is that

• IF evaluates the condition first and then selects the branch
expression to evaluate based on the result of the condition.

• IF-EAGER evaluates both branch expressions first and
then evaluates the condition. The return value is based on
the condition.

IFERROR(

 value,

 value_if_error

)

Evaluates an expression and returns a specified value if the
expression returns an error. Otherwise, returns the value of
the expression itself.

NOT(logical_value) Changes FALSE to TRUE, or TRUE to FALSE.

OR(

 logical_value,

 logical_value

)

Checks whether one of the arguments is TRUE to return
TRUE. The function returns FALSE if both arguments are
FALSE.

If you have more than two arguments, use || (double pipe) as
an alternative and you can have as many “||” as you like.

Last updated 29th July 2022 - Version 5.1

Function Notes

SWITCH(

 Expression,

 value1, expression1

 [, value2, expression2] …

 [, else, expression]

)

Expression is evaluated and the result is matched with the
given values. If a match is found, the corresponding
expression is evaluated.

If the result is not matched with any of the given values, and
else is given, the corresponding expression is evaluated.

All expressions must be of the same data type.

TRUE() Returns the logical value TRUE.

Last updated 29th July 2022 - Version 5.1

DAX Math and Trig Functions

DAX Math and Trig Functions are similar to Excel mathematical and trigonometric functions.

Function Notes

ABS(number) Removes the negative sign if it exists.

ACOS(number) Returns the arccosine, or inverse cosine, of a number. The
arccosine is the angle whose cosine is number. The returned
angle is given in radians in the range 0 (zero) to pi.

ACOSH(number) Returns the inverse hyperbolic cosine of a number. The
number must be greater than or equal to 1. The inverse
hyperbolic cosine is the value whose hyperbolic cosine is

number, so ACOSH(COSH(number)) equals number.

ASIN(number) Returns the arcsine, or inverse sine, of a number. The arcsine
is the angle whose sine is number. The returned angle is given
in radians in the range -pi/2 to pi/2.

ASINH(number) Returns the inverse hyperbolic sine of a number. The inverse
hyperbolic sine is the value whose hyperbolic sine is number,
so ASINH(SINH(number)) equals number.

ATAN(number) Returns the arctangent, or inverse tangent, of a number. The
arctangent is the angle whose tangent is number. The returned
angle is given in radians in the range -pi/2 to pi/2.

ATANH(number) Returns the inverse hyperbolic tangent of a number. Number
must be between -1 and 1 (excluding -1 and 1). The inverse
hyperbolic tangent is the value whose hyperbolic tangent is

number, so ATANH(TANH(number)) equals number.

CEILING(

 number,

 significance

)

Rounds a number up, to the nearest integer or to the nearest
multiple of significance.

COMBIN(

 number,

 number_chosen

)

Returns the number of combinations for a given number of
items.

Numeric arguments are truncated to integers.

If either argument is nonnumeric, COMBIN returns the
#VALUE! error value.

If number<0, number_chosen<0, or number<number_chosen,
COMBIN returns the #NUM! error value.

https://msdn.microsoft.com/en-us/library/ee634241.aspx

Last updated 29th July 2022 - Version 5.1

Function Notes

COMBINA(

 number,

 number_chosen

)

Returns the number of combinations (with repetitions) for a
given number of items.

• number must be greater than or equal to 0, and greater
than or equal to number_chosen.

• number_chosen must be greater than or equal to 0.

If the value of either argument is outside of it’s constraints,
COMBINA returns the #NUM! error value.

If either argument is a non-numeric value, COMBINA returns
the #VALUE! error value.

Non-integer values are truncated.

COS(number) Returns the cosine of the given angle.

COSH(number) Returns the hyperbolic cosine of a number.

CURRENCY(value) The value of the expression evaluated and returned as a
currency type value.

DEGREES(angle) Converts radians into degrees.

DIVIDE(

 numerator,

 denominator

 [, alternate-result]

)

Safe divide function that gracefully handles a divide by zero
error.

Performs division and returns alternate result or BLANK() on
division by 0.

EVEN(number) Returns number rounded up to the nearest even integer.

EXP(number) Returns e raised to the power of a given number. The constant
e equals 2.71828182845904, the base of the natural logarithm.

FACT(number) Returns the factorial of a number, equal to

1*2*3*...number..

number should be a non-negative integer.

FLOOR(

 number,

 significance

)

Rounds a number down, toward zero, to the nearest multiple
of significance.

GCD(

 number1

 [, number2] …

)

Returns the greatest common divisor of two or more integers.
The greatest common divisor is the largest integer that divides
both number1 and number2 without a remainder.

If only one number is given, the function returns the number
itself.

INT(number) Rounds a number down to the nearest integer.

Last updated 29th July 2022 - Version 5.1

Function Notes

ISO.CEILING(

 number

 [, significance]

)

Rounds number up, to the nearest multiple of significance.

Rounds number up, to the nearest integer if significance is
omitted.

LCM(

 number1

 [, number2] …

)

Returns the least common multiple of integers. The least
common multiple is the smallest positive integer that is a
multiple of all integer arguments number1, number2, and so
on.

LN(number) Returns the natural logarithm of a number.

Natural logarithms are based on the constant e
(2.71828182845904).

LOG(

 number,

 [base]

)

Returns the logarithm of a number to the base you specify.

If base is omitted, it is taken as 10.

You might receive an error if the value is too large to be
displayed.

LOG10(number) Returns the base-10 logarithm of a number.

MOD(

 number,

 divisor

)

Returns the remainder after a number is divided by a divisor.
The result always has the same sign as the divisor.

If the divisor is 0 (zero), MOD returns an error. You cannot
divide by 0.

MROUND(

 number,

 multiple

)

Returns a number rounded to the desired multiple.

ODD(number) Returns number rounded up to the nearest odd integer.

PERMUT(

 number,

 number_chosen

)

Returns the number of permutations for a given number of
objects that can be selected from number objects.

A permutation is any set or subset of objects or events where
internal order is significant.

PI() Returns the value of Pi, 3.14159265358979, accurate to 15
digits.

POWER(

 number,

 power

)

Returns the result of a number raised to a power.

Last updated 29th July 2022 - Version 5.1

Function Notes

QUOTIENT(

 numerator,

 denominator

)

Performs division and returns only the integer portion of the
division result. Use this function when you want to discard the
remainder of division.

RADIANS(angle) Converts degrees to radians.

RAND() Returns a random number greater than or equal to 0 and less
than 1, evenly distributed. The number that is returned
changes each time the cell containing this function is
recalculated.

RANDBETWEEN(

 bottom,

 top

)

Returns a random number in the range between two numbers
you specify.

ROUND(

 number,

 num_digits

)

Rounds a number to the specified number of digits.

ROUNDDOWN(

 number,

 num_digits

)

Rounds a number down, toward zero.

ROUNDUP(

 number,

 num_digits

)

Rounds a number up, away from 0 (zero).

SIGN(number) Determines the sign of a number, the result of a calculation, or
a value in a column. The function returns 1 if the number is
positive, 0 (zero) if the number is zero, or -1 if the number is
negative.

SIN(number) Returns the sine of the given angle.

SINH(number) Returns the hyperbolic sine of a number.

SQRT(number) Returns the square root of a number.

If the number is negative, the SQRT function returns an error.

SQRTPI(number) Returns the square root of (number * pi).

TAN(number) Returns the tangent of the given angle.

TANH(number) Returns the hyperbolic tangent of a number.

Last updated 29th July 2022 - Version 5.1

Function Notes

TRUNC(

 number,

 num_digits

)

Truncates a number to an integer by removing the decimal, or
fractional, part of the number.

num_digits specifies the precision of the truncation; if
omitted, 0 (zero).

Last updated 29th July 2022 - Version 5.1

DAX Other Functions

These functions perform unique actions that cannot be defined by any of the categories.

Function Notes

CONVERT(

 Expression,

 Datatype

)

Converts an expression of one data type to another.

Datatype can be any of the following.

• INTEGER (Whole Number)

• DOUBLE (Decimal Number)

• STRING (Text)

• BOOLEAN (True/False)

• CURRENCY (Fixed Decimal Number)

• DATETIME (Date, Time, etc.)

ERROR(text) Raises an error with an error message.

VAR VarName = Expression

Stores the result of an expression as a named variable, which
can then be passed as an argument to other measure
expressions. Once resultant values have been calculated for a
variable expression, those values do not change, even if the
variable is referenced in another expression.

VarName is the name of the variable (identifier).

• Supported character set: a-z, A-Z, 0-9.

• 0-9 are not valid as first character.

• __ (double underscore) is allowed as a prefix. No other
special characters are supported.

• Delimiters are not supported. For example, ‘VarName’ or
[VarName] will result in an error.

• Reserved keywords not allowed.

• Names of existing tables are not allowed.
• Empty spaces are not allowed.

Expression is a DAX expression which returns a scalar or table
value.

• Expression can contain another VAR declaration.

When referencing a variable:

• Measures cannot refer to variables defined outside the
measure expression, but can refer to functional scope
variables defined within the expression.

• Variables can refer to measures.

• Variables can refer to previously defined variables.

Columns in table variables cannot be referenced via
TableName[ColumnName] syntax.

https://msdn.microsoft.com/en-us/library/mt150101.aspx

Last updated 29th July 2022 - Version 5.1

DAX Other Special Functions (X-Functions / Iterators)

These functions perform specific actions that complement the other DAX functions.

DAX Iterator Functions, called iterators for short, take a column or a table as the argument and aggregate
the values just as aggregation functions—but using a different approach. These functions aggregate the
values in a row context.

These are “X-functions" (i.e., any function that has an X on the end of the name). The iterators given below
also include statistical iterator functions.

DAX also has two financial functions that got added in Excel 2016.

Function Notes

AVERAGEX(

 table,

 expression

)

Calculates the average (arithmetic mean) of a set of
expressions evaluated over a table.

CONCATENATEX(

 table,

 expression

 [, delimiter]

)

Concatenates the result of an expression evaluated for each
row in a table.

COUNTAX(

 table,

 expression

)

The COUNTAX function counts nonblank results when
evaluating the result of an expression over a table.

That is, it works just like the COUNTA function, but is used to
iterate through the rows in a table and count rows where the
specified expressions result in a nonblank result.

COUNTX(

 table,

 expression

)

Counts the number of rows that contain a number or an
expression that evaluates to a number, when evaluating an
expression over a table.

GEOMEANX(

 table,

 expression

)

Returns the geometric mean of an expression evaluated for
each row in a table.

MAXX(

 table,

 expression

)

Returns the largest numeric value that results from evaluating
an expression for each row of a table.

• The first argument can be a table name, or an expression
that evaluates to a table.

• The second argument indicates the expression to be
evaluated for each row of the table.

Last updated 29th July 2022 - Version 5.1

Function Notes

MEDIANX(

 table,

 expression

)

Returns the median of an expression evaluated for each row
in a table.

MINX(

 table,

 expression

)

Returns the smallest numeric value that results from
evaluating an expression for each row of a table.

• The first argument can be a table name, or an expression
that evaluates to a table.

• The second argument indicates the expression to be
evaluated for each row of the table.

PERCENTILEX.EXC(

 table,

 expression,

 k

)

Returns the percentile number of an expression evaluated for
each row in a table.

PERCENTILEX.INC(

 table,

 expression,

 k

)

Returns the percentile number of an expression evaluated for
each row in a table.

PRODUCTX(

 table,

 expression

)

Returns the product of an expression evaluated for each row
in a table.

RANKX(

 table,

 expression,

 [value],

 [order],

 [ties]

)

Returns the ranking of a number in a list of numbers for each
row in the table argument.

STDEVX.P(

 table,

 expression

)

Returns the standard deviation of the entire population.

expression is any DAX expression that returns a single scalar
value, where the expression is to be evaluated multiple times
(for each row/context).

Last updated 29th July 2022 - Version 5.1

Function Notes

SUMX(

 table,

 expression

)

Returns the sum of an expression evaluated for each row in a
table.

VARX.P(

 table,

 expression

)

Returns the variance of the entire population.

VARX.S(

 table,

 expression

)

Returns the variance of a sample population.

Last updated 29th July 2022 - Version 5.1

DAX Other Special Functions (Argument Functions)

In DAX, there are also some special functions that have a very specific purpose of usability in other DAX
functions only. i.e. they can be used only as arguments to certain DAX functions. These functions cannot
be used as standalone functions.

Function Notes

CURRENTGROUP() CURRENTGROUP can only be used in an expression
that defines a column within the GROUPBY function.

In-effect, CURRENTGROUP returns a set of rows from
the “table” argument of GROUPBY that belong to the
current row of the GROUPBY result.

The CURRENTGROUP function takes no arguments and
is only supported as the first argument to one of the
following aggregation functions: AverageX, CountAX,
CountX, GeoMeanX, MaxX, MinX, ProductX,
StDevX.S, StDevX.P, SumX, VarX.S, VarX.P.

IGNORE(expression) IGNORE function does not return a value.

IGNORE can be used as an expression argument to
SUMMARIZECOLUMNS function.

NONVISUAL(expression)

Returns a table of values and used with
SUMMARIZECOLUMNS.

Marks a value filter in SUMMARIZECOLUMNS function
as not affecting measure values, but only applying to
group-by columns.

ROLLUPADDISSUBTOTAL(

 groupBy_columnName,

 isSubtotal_columnName,

 [groupBy_columnName,

 isSubtotal_columnName], …

)

ROLLUPADDISSUBTOTAL function does not return a
value. It only specifies the set of columns to be
subtotalled.

ROLLUPADDISSUBTOTAL is used with
SUMMARIZECOLUMNS function.

ROLLUPGROUP(

 groupBy_columnName,

 groupBy_columnName

)

ROLLUPGROUP can only be used as a
groupBy_columnName argument to the
ROLLUPADDISSUBTOTAL and / or the SUMMARIZE
functions.

ROLLUPGROUP is used inside the
ROLLUPISSUBTOTAL function to reflect
ROLLUPGROUPs present in the supplied table
argument.

Last updated 29th July 2022 - Version 5.1

Function Notes

ROLLUPISSUBTOTAL(

 groupingColumn,

 isSubtotal_columnName,

 [groupingColumn,

 isSubtotal_columnName], …

)

ROLLUPISSUBTOTAL is used to define the supplied
table argument to the ADDMISSINGITEMS function.

The ADDMISSINGITEMS function requires that, if
ROLLUPISSUBTOTAL was used to define the supplied
table argument, ISSUBTOTAL columns corresponding
to each group by column, or ROLLUPGROUP, are
present in the supplied table argument. Also, the names
of the ISSUBTOTAL columns must be supplied in the
ROLLUPISSUBTOTAL function inside
ADDMISSINGITEMS and they must match names of
Boolean columns in the supplied table argument. This
enables the ADDMISSINGITEMS function to identify
BLANK values stemming from the fact that a row is a
subtotal row from other BLANK values.

Last updated 29th July 2022 - Version 5.1

DAX Parent and Child Functions

DAX Parent and Child functions help to manage data that is presented as a parent/child hierarchy in the
data model.

For more information read. Understanding Functions for Parent-Child Hierarchies in DAX.

Function Notes

PATH(

 ID_columnName,

 parent_columnName

)

Returns a delimited text string with the identifiers of all the
parents of the current identifier, starting with the oldest and
continuing until current.

PATHCONTAINS(

 path,

 item

)

Returns TRUE if the specified item exists within the specified

path.

PATHITEM(

 path,

 position,

 [type]

)

Returns the item at the specified position from a string
resulting from evaluation of a PATH function. Positions are
counted from left to right.

PATHITEMREVERSE(

 path,

 position,

 [type]

)

Returns the item at the specified position from a string
resulting from evaluation of a PATH function. Positions are
counted backwards from right to left.

PATHLENGTH(path) Returns the number of parents to the specified item in a given
PATH result, including self.

https://msdn.microsoft.com/en-us/library/mt150102.aspx
https://msdn.microsoft.com/en-us/library/gg492192.aspx

Last updated 29th July 2022 - Version 5.1

DAX Query Functions

These DAX functions are helpful in writing queries in DAX. These functions return tables that can be used
in other DAX functions as input. The resulting tables are virtual and are not materialised.

DAX Studio is a great way to learn about table functions because you can “see” the tables materialised on
the screen. Read about DAX Studio as a tool to query your data model here.
http://exceleratorbi.com.au/getting-started-dax-studio/.

Function Notes

ADDCOLUMNS(

 table,

 name, expression

 [, name, expression]

 …

)

Adds calculated columns to the given table or table
expression.

CROSSJOIN(

 table,

 table

 [, table]

 …

)

Returns a table that contains the Cartesian product of all rows
from all tables in the arguments. The columns in the new table
are all the columns in all the argument tables.

DATATABLE(

 ColumnName1,

 DataType1,

 ColumnName2,

 DataType2, ...,

 {{Value1, Value2 …},

 {Value1, Value2 …}, …

 }

)

Returns a table declaring an inline set of values.

Each of the columns is given a name and the data type of the
column is provided.

Then, the set of values is given –

{{Row 1 values},

 {Row 2 values},

 …

}

EXCEPT(

 table_expression1,

 table_expression2

)

Returns a table that contains the rows of one table minus all
the rows of another table.

GENERATE(

 table1,

 table2

)

Returns a table with the Cartesian product between each row
in table1 and the table that results from evaluating table2 in the
context of the current row from table1.

http://exceleratorbi.com.au/getting-started-dax-studio/

Last updated 29th July 2022 - Version 5.1

Function Notes

GENERATEALL(

 table1,

 table2

)

Returns a table with the Cartesian product between each row
in table1 and the table that results from evaluating table2 in the
context of the current row from table1.

GROUPBY(

 table,

 [<groupBy_columnName1>],

 [<name,

 expression>]

 …

)

Returns a table with the selected columns for the
groupBy_columnName arguments and the grouped by
columns designated by the name arguments.

The GROUPBY function is similar to the SUMMARIZE
function. However, GROUPBY does not do an implicit
CALCULATE and the group isn’t placed into the filter context.

GENERATESERIES(

 StartValue,

 EndValue

 [, IncrementValue]

)

Generates a table of values using the parameters provided

INTERSECT(table, table) Returns the row intersection of two tables, retaining duplicates.

NATURALINNERJOIN(

 leftJoinTable,

 rightJoinTable

)

Performs an inner join of a table with another table.

The tables are joined on common columns (by name) in the
two tables.

If the two tables have no common column names, an error is
returned.

NATURALLEFTOUTERJOIN(

 leftJoinTable,

 rightJoinTable

)

Performs an inner join of a table with another table.

The tables are joined on common columns (by name) in the
two tables.

If the two tables have no common column names, an error is
returned.

ROW(

 name, expression

 [, name, expression]

 …

)

Returns a table with a single row containing values that result
from the expressions given to each column.

Last updated 29th July 2022 - Version 5.1

Function Notes

SELECTCOLUMNS(

 table,

 name, scalar_expression

 [, name, scalar_expression]

 …

)

Adds calculated columns to the given table or table
expression.

SELECTCOLUMNS starts with an empty table and that is the
only difference between ADDCOLUMNS and
SELECTCOLUMNS.

SUMMARIZE(

 table,

 groupBy_columnName

 [, groupBy_columnName]

 …,

 name, expression,

 [name, expression]

 …

)

Returns a table of values for use in a query or inside a formula
that uses a table. If there are relationships between tables,
always specify the table on the many side of the relationship
as the table parameter. This function is semantically similar to
“group by” in SQL.

SUMMARIZECOLUMNS(

 groupBy_columnName

 [, groupBy_columnName]

 …,

 [filterTable] …

 [, name, expression] …

)

Returns a summary table over a set of groups. A table which
includes combinations of values from the supplied columns,
based on the grouping specified.

Only rows for which at least one of the supplied expressions
return a non-blank value are included in the table returned.

If all expressions evaluate to BLANK/NULL for a row, that row
is not included in the table returned.

A column cannot be specified more than once in the
groupBy_columnName.

Last updated 29th July 2022 - Version 5.1

Function Notes

Table Constructor

{scalar_expression1,

 scalar_expression2, …

}

{(scalar_expression11,

 scalar_expression12, …,

 scalar_expression1N

),

 (scalar_expression21),

 scalar_expression22, …,

 scalar_expression2N

),

…

}

Returns a table of one or more columns.

• When there is only one column, the name of the column is
Value.

• When there are N columns where N > 1, the names of the
columns from left to right are Value1, Value2, …, ValueN.

Note:

• The number of scalar expressions must be the same for all
rows.

• When the data types of the values for a column are
different in different rows, all values are converted to a
common data type.

UNION(

 table_expression1,

 table_expression2

)

Creates a union (join) table from a pair of tables.

Returns a table that contains all the rows from each of the two
table expressions.

The two tables must have the same number of columns.

Columns are combined by position in their respective tables.

The column names in the return table will match the column
names in table_expression1.

Duplicate rows are retained.

The returned table has lineage where possible. When data
types differ, the resulting data type is determined based on the
rules for data type coercion.

The returned table will not contain columns from related tables.

Last updated 29th July 2022 - Version 5.1

DAX Statistical Functions

Following are the DAX Statistical Functions:

Function Notes

BETA.DIST(

 x,

 alpha,

 beta,

 cumulative

 [, A]

 [, B]

)

Returns the beta distribution. The beta distribution is commonly
used to study variation in the percentage of something across
samples, such as the fraction of the day people spend watching
television.

BETA.INV(

 probability,

 alpha,

 beta

 [, A]

 [, B]

)

Returns the inverse of the beta cumulative probability density
function (BETA.DIST).

If

probability = BETA.DIST(x, ...TRUE),

then

BETA.INV(probability, ...) = x.

CHISQ.INV(

 probability,

 deg_freedom

)

Returns the inverse of the left-tailed probability of the chi-squared
distribution.

The chi-squared distribution is commonly used to study variation
in the percentage of something across samples.

CHISQ.INV.RT(

 probability,

 deg_freedom

)

Returns the inverse of the right-tailed probability of the chi-
squared distribution.

If

probability = CHISQ.DIST.RT(x,...),

then

CHISQ.INV.RT(probability,...) = x.

Use this function to compare observed results with expected
ones in order to decide whether your original hypothesis is valid.

CONFIDENCE.NORM(

 alpha,

 standard_dev,

 size

)

The confidence interval is a range of values.

Your sample mean, x, is at the center of this range and the range
is x ± CONFIDENCE.NORM.

https://msdn.microsoft.com/en-us/library/ee634822.aspx

Last updated 29th July 2022 - Version 5.1

Function Notes

CONFIDENCE.T(

 alpha,

 standard_dev,

 size

)

Returns the confidence interval for a population mean, using a
Student's t distribution.

EXPON.DIST(

 x,

 lambda,

 cumulative

)

Returns the exponential distribution. Use EXPON.DIST to model
the time between events.

GEOMEAN(column) Returns the geometric mean of the numbers in a column.

MEDIAN(column) Returns the median of numbers in a column.

NORM.DIST(X, Mean, Standard_dev,
Cumulative)

Returns the normal distribution for the specified mean and
standard deviation.

NORM.INV(Probability, Mean,
Standard_dev)

Returns the inverse of the normal cumulative distribution for the
specified mean and standard deviation.

NORM.S.DIST(Z, Cumulative) Returns the standard normal distribution (has a mean of zero and
a standard deviation of one).

NORM.S.INV(Probability) Returns the inverse of the standard normal cumulative
distribution. The distribution has a mean of zero and a standard
deviation of one.

PERCENTILE.EXC(

 column,

 k

)

Returns the k-th percentile of values in a range, where k is in the
range 0..1, exclusive.

PERCENTILE.INC(

 column,

 k

)

Returns the k-th percentile of values in a range, where k is in the
range 0..1, inclusive.

POISSON.DIST(

 x,

 mean,

 cumulative

)

Returns the Poisson distribution.

A common application of the Poisson distribution is predicting the
number of events over a specific time.

Last updated 29th July 2022 - Version 5.1

Function Notes

RANK.EQ(

 value,

 columnName,

 [order]

)

Returns the ranking of a number in a list of numbers.

SAMPLE(

 n_value,

 table,

 orderBy_expression,

 [order]

 [, orderBy_expression, [order], …]

)

Returns a sample of N rows from the specified table.

STDEV.P(ColumnName) Returns the standard deviation of the entire population.

STDEV.S(ColumnName) Returns the standard deviation of a sample population.

T.DIST(X,Deg_freedom,Cumulative) Returns the Student's left-tailed t-distribution.

T.DIST.2T(X,Deg_freedom) Returns the two-tailed Student's t-distribution.

T.DIST.RT(X,Deg_freedom) Returns the right-tailed Student's t-distribution.

T.INV(Probability,Deg_freedom) Returns the left-tailed inverse of the Student's t-distribution.

T.INV.2T(Probability,Deg_freedom) Returns the two-tailed inverse of the Student's t-distribution.

VAR.P(ColumnName) Returns the variance of the entire population.

VAR.S(ColumnName) Returns the variance of a sample population.

Last updated 29th July 2022 - Version 5.1

DAX Text Functions

DAX Text Functions are based on the Excel string functions, but have been modified to work with tables
and columns.

Function Notes

BLANK() Returns a blank.

Blanks are not equivalent to nulls. DAX uses blanks for both
database nulls and for blank cells in Excel.

CODE(text) Returns a numeric code for the first character in a text string.
The returned code corresponds to the character set used by
your computer.

COMBINEVALUES(

 delimiter,

 expression, expression

 [,expression] …

)

Returns the concatenated string where the values of the DAX
expressions are joined by the delimiter (which is a constant).

CONCATENATE(

 text1,

 text2

)

Joins two text strings into one text string.

If you need to add more than two arguments, use the AND (&)
operator.

CONTAINSSTRING(

 within_text,

 find_text

)

Returns TRUE or FALSE indicating whether one string
contains another string.

• CONTAINSSTRING is not case-sensitive.
• You can use ? and * wildcard characters. Use ~ to escape

wildcard characters.

CONTAINSSTRINGEXACT(

 within_text,

 find_text

)

Returns TRUE or FALSE indicating whether one string
contains another string.

• CONTAINSSTRING is case-sensitive.

FIND(

 find_text,

 within_text

 [, start_num]

 [, NotFoundValue]

)

Returns the starting position of one text string within another
text string. FIND is case-sensitive.

https://msdn.microsoft.com/en-us/library/ee634938.aspx

Last updated 29th July 2022 - Version 5.1

Function Notes

FIXED(

number,

decimals

[, no_commas]

)

Rounds a number to the specified number of decimals and
returns the result as text. You can specify that the result be
returned with or without commas.

FORMAT(

 value,

 format_string

 [, <locale_name>]

)

Converts a value to text according to the specified format.

locale_name is optional and is the name of the locale to be
used by the function. Possible values are strings accepted by

the Windows API function LocaleNameToLCID().

LEFT(

 text

 [,num_chars]

)

Returns the specified number of characters from the start of a
text string.

LEN(text) Returns the number of characters in a text string.

LOWER(text) Converts all letters in a text string to lowercase.

MID(

 text,

 start_num,

 num_chars

)

Returns a string of characters from the middle of a text string,
given a starting position and length.

REPLACE(

 old_text,

 start_num,

 num_chars,

 new_text

)

REPLACE replaces part of a text string, based on the number
of characters you specify, with a different text string.

REPT(

 text,

 num_times

)

Repeats text a given number of times. Use REPT to fill a cell
with a number of instances of a text string.

RIGHT(

 text,

 [num_chars]

)

RIGHT returns the last character or characters in a text string,
based on the number of characters you specify.

https://docs.microsoft.com/en-us/windows/win32/api/winnls/nf-winnls-localenametolcid

Last updated 29th July 2022 - Version 5.1

Function Notes

SEARCH(

 find_text,

 within_text

 [, start_num],

 [, NotFoundValue]

)

Returns the number of the character at which a specific
character or text string is first found, reading left to right.

SEARCH function is case insensitive and accent sensitive.

SUBSTITUTE(

 text,

 old_text,

 new_text,

 instance_num

)

Replaces existing text with new text in a text string.

TRIM(text) Removes all spaces from text except for single spaces
between words.

UNICHAR(number) Returns the Unicode character referenced by the numeric
value.

UPPER(text) Converts a text string to all uppercase letters

VALUE(text) You need not use the VALUE function in a formula because
Power Pivot implicitly converts text to numbers.

The argument text can be a constant or in one of the formats -
number, date or time format. Otherwise, an error is returned.

You can use a column reference as argument to VALUE
function. E.g., if you have a column that contains mixed
number types, VALUE can be used to convert all values to a
single numeric data type. However, if you use the VALUE
function with a column that contains mixed numbers and text,
the entire column is flagged with an error, because not all
values in all rows can be converted to numbers.

Last updated 29th July 2022 - Version 5.1

DAX Time Intelligence Functions

DAX Time Intelligence Functions enable you to manipulate data using time periods, including days, months,
quarters and years, and then build and compare calculations over those periods.

There are 3 classes of DAX Time Intelligence functions based on their return value.

• Those that return scalar values (e.g. TOTALYTD). They are stand-alone functions and so can be used
as a stand-alone measure/function.

• Those that return a table containing a single column and single row with a date value (e.g.
FIRSTNONBLANK). They can be used either as stand-alone functions to define a measure (as a scalar
value) or as an argument to any function that requires a table in its arguments. These types of functions
therefore behave as both a scalar value and a table, depending on the use case.

• Those that return a table of dates (e.g. DATESYTD) and are designed to be used inside a CALCULATE
function.

DAX Time Intelligence Functions that return Scalar Values

Function Notes

CLOSINGBALANCEMONTH(

 expression,

 dates,

 [filter]

)

Returns a scalar value that represents the expression
evaluated at the last date of the month in the current context.

E.g. Use to create a measure that calculates the 'Month End
Inventory Value' of the product inventory.

CLOSINGBALANCEQUARTER(

 expression,

 dates,

 [filter]

)

Returns a scalar value that represents the expression
evaluated at the last date of the month in the current context.

E.g. Use to create a measure that calculates the 'Quarter End
Inventory Value' of the product inventory.

CLOSINGBALANCEYEAR(

 expression,

 dates,

 [filter],

 [year_end_date]

)

Returns a scalar value that represents the expression at the
last date of the year in the current context.

E.g. Use to create a measure that calculates the 'Year End
Inventory Value' of the product inventory.

OPENINGBALANCEMONTH(

 expression,

 dates

 [, filter]

)

Returns a scalar value that represents the expression
evaluated at the first date of the month in the current context.

E.g. You can create a measure that calculates the 'Month
Start Inventory Value' of the product inventory.

https://msdn.microsoft.com/en-us/library/ee634763.aspx

Last updated 29th July 2022 - Version 5.1

Function Notes

OPENINGBALANCEQUARTER(

 expression,

 dates

 [, filter]

)

Returns a scalar value that represents the expression
evaluated at the first date of the quarter in the current context.

E.g. You can create a measure that calculates the ‘Quarter
Start Inventory Value' of the product inventory.

OPENINGBALANCEYEAR(

 expression,

 dates

 [, filter]

)

Returns a scalar value that represents the expression
evaluated at the first date of the year in the current context.

E.g. You can create a measure that calculates the ‘Year Start
Inventory Value' of the product inventory.

TOTALMTD(

 expression,

 dates

 [, filter]

)

Returns a scalar value that represents the expression
evaluated for the dates in the current month-to-date, given the
dates in dates.

TOTALQTD(

 expression,

 dates

 [, filter]

)

Returns a scalar value that represents the expression
evaluated for the dates in the current quarter-to-date, given the
dates in dates.

TOTALYTD(

 expression,

 dates

 [, filter]

 [, year_end_date]

)

Returns a scalar value that represents the expression
evaluated for the dates in the current year-to-date, given the
dates in dates.

DAX Time Intelligence Functions that return both a Table and a Scalar

These functions return a table containing a single column and single row with a date value (can be used as
a scalar value or a table input to another function).

Last updated 29th July 2022 - Version 5.1

ENDOFMONTH(dates) Returns a table containing a single column and single row with
the last date of the month in the current context for the
specified column of dates.

Therefore, this function can be used as an argument to any
function that requires a table in its arguments. Also, the
returned value can be used whenever a date value is required.

ENDOFQUARTER(dates) Returns a table containing a single column and single row with
the last date of the quarter in the current context for the
specified column of dates.

Therefore, this function can be used as an argument to any
function that requires a table in its arguments. Also, the
returned value can be used whenever a date value is required.

ENDOFYEAR(

 dates

 [, year_end_date]

)

Returns a table containing a single column and single row with
the last date of the year in the current context for the specified
column of dates.

Therefore, this function can be used as an argument to any
function that requires a table in its arguments. Also, the
returned value can be used whenever a date value is required.

FIRSTDATE(dates) Returns a table containing a single column and single row with
the first date in the current context for the specified column of
dates.

Therefore, this function can be used as an argument to any
function that requires a table in its arguments. Also, the
returned value can be used whenever a date value is required.

When the current context is a single date, the date returned by
the FIRSTDATE and LASTDATE functions will be equal.

FIRSTNONBLANK(

 column,

 expression

)

Returns a table containing a single column and single row with
the first value in the column filtered by the current context,
where the expression is not blank.

Therefore, this function can be used as an argument to any
function that requires a table in its arguments. Also, the
returned value can be used whenever a date value is required.

E.g. You could get the first value for which there were sales of
a product.

FIRSTNONBLANKVALUE(

 column,

 expression

)

Evaluates an expression filtered by the sorted values of a
column and returns the first value of the expression that is not
blank.

This function is different from FIRSTNONBLANK in that the
column is added to the filter context for the evaluation of
expression.

LASTDATE(dates) Returns a table containing a single column and single row with
the last date in the current context for the specified column of
dates.

Therefore, this function can be used as an argument to any
function that requires a table in its arguments. Also, the
returned value can be used whenever a date value is required.

Last updated 29th July 2022 - Version 5.1

When the current context is a single date, the date returned by
the FIRSTDATE and LASTDATE functions will be equal.

LASTNONBLANK(

 column,

 expression

)

Returns a table containing a single column and single row with
the last value in the column, filtered by the current context,
where the expression is not blank.

Therefore, this function can be used as an argument to any
function that requires a table in its arguments. Also, the
returned value can be used whenever a date value is required.

E.g. You could get the last value for which there were sales of
a product.

LASTNONBLANKVALUE(

 column,

 expression

)

Evaluates an expression filtered by the sorted values of a
column and returns the last value of the expression that is not
blank.

This function is different from LASTNONBLANK in that the
column is added to the filter context for the evaluation of
expression.

STARTOFMONTH(dates) Returns a table containing a single column and single row with
the first date of the month in the current context for the
specified column of dates.

Therefore, this function can be used as an argument to any
function that requires a table in its arguments. Also, the
returned value can be used whenever a date value is required.

STARTOFQUARTER(dates) Returns a table containing a single column and single row with
the first date of the quarter in the current context for the
specified column of dates.

Therefore, this function can be used as an argument to any
function that requires a table in its arguments. Also, the
returned value can be used whenever a date value is required.

STARTOFYEAR(

 Dates,

 [year end date]

)

Returns a table containing a single column and single row with
the first date of the year in the current context for the specified
column of dates.

Therefore, this function can be used as an argument to any
function that requires a table in its arguments. Also, the
returned value can be used whenever a date value is required.

DAX Time Intelligence Functions that return a Table of Dates

DATEADD(

 dates,

 number_of_intervals,

 interval

)

Returns a table that contains a column of dates, shifted either
forward or backward in time by the specified number of
intervals from the dates in the current context.

Designed to be used inside a CALCULATE as a table filter.

If the number specified for number_of_intervals is positive,
the dates in dates are moved forward in time; if the number is
negative, the dates in dates are shifted back in time.

Last updated 29th July 2022 - Version 5.1

The interval parameter is an enumeration, not a set of strings.
Therefore, values should not be enclosed in quotation marks.
Also, the values: year, quarter, month, day should be spelled
in full when using them.

The result table includes only dates that exist in the dates
column.

If the dates in the current context do not form a contiguous
interval, the function returns an error.

DATESBETWEEN(

 dates,

 start_date,

 end_date

)

Returns a table that contains a column of dates that begins
with the start_date and continues until the end_date.

Designed to be used inside a CALCULATE as a table filter.

The DATESBETWEEN function is provided for working with
custom date ranges.

If you are working with common date intervals such as months,
quarters, and years, the more appropriate function is
DATESINPERIOD.

DATESINPERIOD(

 dates,

 start_date,

 number_of_intervals,

 interval

)

Returns a table that contains a column of dates that begins
with the start_date and continues for the specified

number_of_intervals.

Designed to be used inside a CALCULATE as a table filter.

If the number specified for number_of_intervals is positive,
the dates are moved forward in time; if the number is negative,
the dates are shifted back in time.

The interval parameter is an enumeration, not a set of strings.
Therefore values should not be enclosed in quotation marks.
Also, the values: year, quarter, month, day should be spelled
in full when using them.

The result table includes only dates that appear in the values
of the underlying table column.

This function can be used as an input to CALCULATE to
create a rolling total such as Moving Annual Total (MAT),
rolling 90 days, rolling 90 day average etc.

DATESMTD(dates) Returns a table that contains a column of the dates for the
month to date, in the current context.

Designed to be used inside a CALCULATE as a table filter.

DATESQTD(dates) Returns a table that contains a column of the dates for the
quarter to date, in the current context.

Designed to be used inside a CALCULATE as a table filter.

DATESYTD(

 dates

 [, year_end_date]

)

Returns a table that contains a column of the dates for the year
to date, in the current context.

Designed to be used inside a CALCULATE as a table filter.

year_end_date (optional) is a literal string with a date that
defines the year-end date. The default is December 31.

Last updated 29th July 2022 - Version 5.1

NEXTDAY(dates) Returns a table that contains a column of all dates from the
next day, based on the first date specified in the dates column
in the current context.

Designed to be used inside a CALCULATE as a table filter.

E.g. You can create a measure that calculates the 'next day
sales' of the product sales.

NEXTMONTH(dates) Returns a table that contains a column of all dates from the
next month, based on the first date in the dates column in the
current context.

Designed to be used inside a CALCULATE as a table filter.

E.g. You can create a measure that calculates the 'next
month sales' of the product sales.

NEXTQUARTER(dates) Returns a table that contains a column of all dates in the next
quarter, based on the first date specified in the dates column,
in the current context.

Designed to be used inside a CALCULATE as a table filter.

E.g. You can create a measure that calculates the 'next
quarter sales' of the product sales.

NEXTYEAR(

 dates

 [, year_end_date]

)

Returns a table that contains a column of all dates in the next
year, based on the first date in the dates column, in the current
context.

Designed to be used inside a CALCULATE as a table filter.

E.g. You can create a measure that calculates the 'next year
sales' of the product sales.

Last updated 29th July 2022 - Version 5.1

PARALLELPERIOD(

 dates,

 number_of_intervals,

 interval

)

Returns a table that contains a column of dates that represents
a period parallel to the dates in the specified dates column, in
the current context, with the dates shifted a number of
intervals either forward in time or back in time.

Designed to be used inside a CALCULATE as a table filter.

If the number specified for number_of_intervals is positive,
the dates in dates are moved forward in time; if the number is
negative, the dates in dates are shifted back in time.

The interval parameter is an enumeration, not a set of strings.
Therefore, values should not be enclosed in quotation marks.
Also, the values: year, quarter, month should be spelled in
full when using them.

The result table includes only dates that appear in the values
of the underlying table column.

The PARALLELPERIOD function is similar to the DATEADD
function except that PARALLELPERIOD always returns full
periods at the given granularity level instead of the partial
periods that DATEADD returns.

For example, if you have a selection of dates that starts at June
10 and finishes at June 21 of the same year, and you want to
shift that selection forward by one month then the
PARALLELPERIOD function will return all dates from the next
month (July 1 to July 31), however, if DATEADD is used
instead, then the result will include only dates from July 10 to
July 21.

PREVIOUSDAY(dates) Returns a table that contains a column of all dates
representing the day that is previous to the first date in the

dates column, in the current context.

Designed to be used inside a CALCULATE as a table filter.

E.g. You can create a measure ‘Previous Day Sales’.

PREVIOUSMONTH(dates) Returns a table that contains a column of all dates from the
previous month, based on the first date in the dates column,
in the current context.

Designed to be used inside a CALCULATE as a table filter.

E.g. You can create a measure ‘Previous Month Sales’.

PREVIOUSQUARTER(dates) Returns a table that contains a column of all dates from the
previous quarter, based on the first date in the dates column,
in the current context.

Designed to be used inside a CALCULATE as a table filter.

E.g. You can create a measure ‘Previous Quarter Sales’.

Last updated 29th July 2022 - Version 5.1

PREVIOUSYEAR(

 dates

 [, year_end_date]

)

Returns a table that contains a column of all dates from the
previous year, given the last date in the dates column, in the
current context.

Designed to be used inside a CALCULATE as a table filter.

E.g. You can create a measure ‘Previous Year Sales’.

SAMEPERIODLASTYEAR(dates) Returns a table that contains a column of dates shifted one
year back in time from the dates in the specified dates column,
in the current context.

Designed to be used inside a CALCULATE as a table filter.

The dates returned are the same as the dates returned by this
equivalent formula:

DATEADD(dates, -1, year)

